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Abstract,

The object of study is an clastomer in a closed cell. through which power flows. FEM
approach has been applied to solve the problem. An axisymmetrical FEM model has been
developed in which the model of elastomer material employs the Arruda-Boyce model. It is
based on the specific potential strain energy which is the encrgy accumulated per unit of volume,
For a selected optimized cell geometry the emphasis is laid on the influence of the scale factor,
respectively, the elastormer volume impact upon the transformation of the power flow. The
obtained results are visualized by graphics and relevant conclusions have been made.

Key words: scale factor optimization, closed cell, hyperelastic material, finite clement
simulations

1. Introduction

The hyperelastic materials belong to the polymer materials group.
Depending on the nature of the matter which builds these materials, they can be
hydroplastic, rubber like, foam like and other polymers. In the machinery
construction the components made of hyperclastic materials are known as
clastomers. As a part of machine-building products, the elastomers perform
various functions: vibro-insulation, as congestion elements, as components in
tightening mechanisms, for compensating the deflection of the mutual position
of connected shafts. Analyzing the elastomer applications in the tightening
mechanisms, a practical and scientific interest is the case when a force flow
passes through the elastomer, i.e. when the clastomers perform basic role in the
tightening  process. Simultancously, elastomer applications in tightening
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mechanisms where the transformation of the force flows to be at hand are not
known.

The present investigation basis is the idea for an optimization of the
application of clastomers made of rubber mixes as a medium for transferring of
a pressure in the tightening mechanisms in a such manner that the force flow to
be increased to direction of the workpiece to be fixed. For that purposc the
clastomer is fit in a closed cell having the form of a truncated cone and two
short cylindrical sections [1]. :

The main objective of this work is to obtain quantitative estimation of
the influence of the scale factor, respectively the elastomer volume on the force
flow transformation. The problem has been solved by means of finite clement
(FE) approach.

2. Nature of the technical solution

The principle scheme of the technical solution is presented in Fig. 1. To
reach an intensification of the force flow from piston 1 1o piston 2 it is
necessary elastomer Poisson ratio to be = 0,3, i.c. the elastomer to be almost
incompressible. For that purpose, on the basis of experimental studics it is
chosen a rubber-like material with Shore hardness of 55 [2]. In order to receive
a quantitative assessment of the passing force flow transformation, the

coefficient of the force intensification £ is introduced as [1]:
(1) k=F,/F

where F, and F, are respectively the input and the output forces, relative to

the top of the elastomer’s contact surfaces.

Fs F.>F;

£ Y Ll af

piston 2
<] e
i
= cell
‘ o
T | piston 1 ]
=1 [ I——
kinematic
impact F;

Fig. 1 - Principle scheme.
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3. Organization of the study

In order to make an optimization of the elastomer geometry, a multi-
objective optimization is carried out by means of numerical simulations. In the

condition of a constant volume and when 4 = const and h, = const (Fig. 1),
all the rest parameters depend on only angle /3. It is established that when

B =70" the coefficient k is the biggest and the losses are the smallest. The

objects of this study are the elastomers having optimal geometry but having
different scale factors. The variation of its geometrical parameters depending on
the scale factor, respectively depending on the clastomers volume, is shown in
table 1.

‘Table 1. Geometrical parameters of elastomers

?acci:' d,mm D, mm h, mm h 7 mm V.mm®
0.5 12.5 34,426 3.99 2.5 4484.644
0.75 18.75 51.639 5.985 3.75 15135.677

| 25 68.852 7.98 5 35877.16
1.25 31.25 86.065 9.975 6.25 70072.578
1.5 103.278 103.278 11.97 7:5 121085.412

4. Finite element model

4.1. General characteristic

In view of the nature of the problem to be studied, an axisymmetrical
FE model has been developed (fig. 2 a, b). The pistons 1 and 2, and the cell are
modcled as analytical rigid and the elastomer is modeled as deformable body.

=RP-piston 2

piston 2 =RP-piston 2

piston 1

*RP-piston 1

*RP-piston 1

a) b)
Fig. 2 - Axisymmetrical finite element model, a) scale factor 0.5; b) scale factor 1.5.
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According to the construction of the closed cell, FE model consist of
three parts —piston-1, piston-2 which simulate respectively small piston and big
piston and cell. Tangential and normal contact between the elastomer and
components of the cell allowing a separation are defined as the technique
“master” and “slave” surfaces is applied [3]. According to experimental results
obtained [4], for the rubber to be studied the friction coefficient 0.8 is
assigned.

The kinematic impact applied on the piston 1 is assigned by mcans ofa
rectilinear translation with an amplitude defined by means of a tabulation. The
input and the output forces, relative to the piston-1 and piston-2 are obtained by
reactions in Reference point (RP) of their models (fig. 2 a, b).

The elastomer FE model is built from quadratic quadrilateral FE, type
CAXS8R. In order to obtain correct FE results the geometric similar clastomers
are built with equal average size of the FEs - ] mm (fig. 2a, b).

4.2. Constitutive model of the elastomer
On the basis of a comparison between experimental and FE results, it is

proved that the Arruda-Boyce constitutive model is the most appropriate foi
describing the behavior of the investigated rubber mix [3-UNITECH 2008]:

(I -81)+

) !2=Gf§(f', e =T —9)+H47rff -27)

m "

1
TR
202, 70002,

519 = |z =1
27 TP 243)] +—(——InJ,
5737302 ! N+ 55l

m

the first deviatoric strain invariant

where GG, 4, and D are temperature dependent material parameters; /; 1s the

first deviatory strain invariant defined as:

y

(3) I,=A] +25 +4

[P

!
)-:, are the deviatory stretches: /T, =J 3 A;; J is the total volume ratio (ratio
of current volume to initial); J,, is the elastic volume ratio; A; are the principa
stretches (A; = 1+ &3 €, are the principal linear strains).
The initial shear modulus G, is related to G with the expression:
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3 99 513 . 42039
4) Gy =G(l1+—5+ + + :
=0t 5K 175A4% 875X, 673752i)

A typical value of 4 is 7, from where G, =1,0125G . The initial bulk
modulus K, is related to D with the expression: K, =2/D.

The following material constants are obtained: G=185/6824
G, = 187480038, A, =7,00020847; D =0,0432.

5. Finite element results and discussions

The equivalent von Misses stress distribution for clastomers having
scale factors respectively 0.75 and 1.25 and corresponding to the maximum
displacement of the small piston are shown in Fig. 3. For each studied case the
maximum displacement is conformable to the condition the maximum
equivalent stress to be less than ~ 5 MPg . In the field surrounding small piston
the deforming process is the most intensive because of that the stresses arc
maximum in this zone.

The generalized results obtained from the numerical simulations for
different scale factors are shown in Fig. 4-8. For the elastomers from Table 1,

the output force 5, N and the coefficient of the force intensification

depending on the small piston displacement, arc graphically visualized.
On the basis of the graphical dependences obtained, the following
comments can be made:

e With increasing of the output force ng the cocfficient of the force

intensification kK decreases because of the bigger friction forces
between the elastomer and the cell;

i ] —_—
a) b)
Fig. 3 - Equivalent stress distribution; a) scale factor 0.75; b) scale factor 1.25.
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The dependence between the applied kinematics influence (the small
piston axial displacement) and the output force [, has almost lincar

character. This gives a possibility comparatively casily to control the
force applied to workpiece to be fixed by means of a control on the
small piston displacement;

F, N )
3000 k
syt e i ‘ 4.5
A —— F, N

44

2000
143

1500
| 4.2
1000 Py
500 4
0 T T T - 3,9

0.2 03 0.4 0.5 06 0,7

piston 1 motion, mm
Fig. 4 - Power flow transformation in elastomer with scale factor 0.5.

Fo N p
:

5000
s 4,35

4500
43

4000
425

3500
4,2

3000
415

2500

2000 =S =
v e
1500 403
—‘i\‘\
1000 T T T T 4
0.4 0,5 0,6 0,7 0.8 08
piston 1 motion, mm
Fig. 5 - Power flow transformation in elastomer with scale factor 0.75.
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Fig. 6 - Power flow transformation in elastomer with scale factor 1.
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Fig. 7 - Power flow transformation in elastomer with scale factor 1.25.

With increasing the small piston displacement, the coefficient of the
force intensification decreases with changeable rate. It is observed that
the scale factor leads to rclatively little dispersing of A in the
conditions of the maximum displacement for a given elastomer.
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Fig. 8 - Power flow transformation in elastomer with scale factor 1.5.
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Fig. 9 - Variation of k from scale factor and kinematic impact.

Fig. 9 shows the variation of the coefficient of the force intensificatio’
of clastomers having different scale factors depending on the small pistor
displacement. Obviously, for one of the same kinematic impact the coefficier
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of the force intensification increases with increasing the scale factor. This can
be explained by relatively smaller losses causal by external friction for
clastomers having larger volume.

6. Conclusion

A generalized FE model of the eclastomer in a closed ccll has been
developed, trough which force flow passes so that it is intensificated.

The influence of the scale factor on the flow force transformation has
been studied by means of numcrical simulations of the geometric similar
clastomers.

The quantitative dependences between elastomers power characteristic
and admissible values of the applied upon them kinematic impacts arc obtained.

The results obtained can be used for design of tightening mechanisms
based on the studied technical solution.
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