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multicriteria optimization of metal 
cutting machine’s main drive
A parametric optimization problem is formulated for the metal cutting machine main drive as a multicriteria nonlinear optimization problem of robust dynamical system. A mathematical model determining amplitude-frequency characteristics of tortional forced-vibrations of the main drive is developed. An assessment system of the vibrational stability is presented. A procedure determining the unique Pareto optimal solution by means of direct approach and a compromising scheme based on the concept of the “utopical” point in the criteria space and procedure for a “(-selection” are utilized for approximatelly solving the formulated problem. An example which considers the parametric optimization for the main drive of CNC machine CE063 is included.
INTRODUCTION
A variety of methods are employed for designing the main drives (MD) of metal cutting machines (MCM) and they all aim at construction optimization in a specific sense. Quality criteria are determined by different requirements - geometrical, kinematical, strength and deformation, dynamical, technological, economic, etc. Generally speaking, the selected criteria are conflicting, which leads to the necessity for formulating and solving a multicriteria design problem.

Quite often, despite the found optimal solution, the real construction of the designed object functions in an environment of various indeterminacies which can destabilize its performance and worsen the quality of technological processes. At the project development stage such indeterminacies are the unpredictable variations of some components of the unmanageable parameter vector. They are caused by different intervals of recommended coefficient values which give account for the elastic-dissipative characteristics according to the association conditions of the constructive components. This effect is intensified by unwanted stationary or non-stationary disturbances of the model parameters by external actions. Therefore, the solutions which are to be worked out in the process of synthesizing the object, have to show quality characteristics that are very little susceptible to parameter disturbances.

In general, the problems of robust dynamic systems synthesis are formulated as problems of robust dynamic model, robust phase coordinates, robust quality criterion, selection of optimal nominal of the unmanageable parameters, etc. [8].

Conditions for structure robustness are included in the optimization problem in different ways, because of the ambiguous interpretation and assessment of the property of robustness. In [7] robustness is achieved by varying the unmanageable vector components in a planned experiment, and the condition for robustness of the dynamic system is set as a limit in the optimization problem structure. Thus, parameter robustness is a priori present in the optimal solution which is found. The paper presents and solves the multicriteria parameter optimization problem for the main drive of a metal cutting machine as a robust dynamic system synthesis in a given frequency domain.
OPTIMIZATION MODEL
Mathematical model
The examined object is a split MD with aggregate structure which includes a DC motor, a two-stage gearbox and a spindle unit connected with belt drives [1].

For steady-state operating modes with the assumptions for a discrete mechanical system with linear characteristics of the elastic-dissipative ties [4], MD is presented by an adapted dynamic model (DM) (fig. 1) for each kinematic chain l with parameters – the adapted values of: mass moments of inertia Jj of concentrated masses, elasticity coefficient ki, damping coefficient hi and external influence moments Mj, where j(J:([1:n], i(I:([1:(n(1)], l(L:([1:2].


For the case of a dissipative mechanical system with harmonic disturbances and generalized coordinates, the rotation angles of the concentrated masses, the differential equations of motion are worked out by Lagrange equations of the second kind. The mathematical model for determining the amplitude-frequency characteristics (AFC) of the adapted DM is found from their solution for the induced vibrations whose amplitudes Dl in a complex form are expressed by the equations
Dl ( [( Cl ( f  2Al) ( i f Bl ] \ Ql,   l(L.
(1)
Here Al, Bl and Cl are square matrices which contain the respective generalized adapted inertia, resistance and elastic coefficients, Ql is a vector whose elements are the generalized amplitudes of the external influence, and f is the vector of harmonic disturbance frequencies.
Parameters of the mathematical model
The elements of the matrices Al, Bl and Cl are expressed by the characteristics Jj, ki and hi of the adapted DM (fig. 1), which are determined unambiguously through the functional dependencies
Jj = Jj (r,ρ), ki = ki (r,ρ), hi = hi (r,ρ,ψ). 
(2)
Here r is the vector whose elements are the geometrical parameters of the structural elements of the main drive, worked out through the kinematic and strength - deformation dimensioning, ρ – the vector with elements that give account for the physical-mechanical properties of the materials used, and ψ – is the vector with elements that give account for the dissipation of mechanical energy, depending on the structural elements association conditions.
From the condition for keeping the prototype structure, the calculation diameters u :( {u((r}, (([1:4] of the belt drives, are assumed as variable parameters. The parameters Jj, ki and hi of the adapted DM are explicit functions of uλ and are presented by familiar theoretical and empirical dependencies [4].

In specialized literature, the elements of vectors ρ and ψ are usually presented within definite intervals with recommendations for a respective choice. Most often these are different coefficients which define the ki and hi characteristics. This results in certain indeterminacies in the found AFC and the respective quality assessment. In the optimization problem these values form the unmanageable parameter vector with limited interval disturbances (:({(,(}(А, where A is a given bounded set.

The vector of invariable parameters p ( r, which determine unambiguously AFC of MD form the set of specified parameters p(P.

The generalized load Ql is assumed of a harmonic kind, and is applied on the concentrated mass. Its amplitude is defined by the tangent component of the cutting force for a frequently used technological operation – turning of workpieces with 5% variation of the feed rate per revolution with 4mm cutting depth and filing 0,25 mm/rev. In the problem solved here, the tangent component is assumed to be the one respective to the spinning frequency of the spindle unit for the calculation chain. The adapted induced effects at such technological load are with frequency f E=22,5 Hz.

Constraints
The kinematic condition for preservation of the spindle spinning frequency is a functional constraint of an equality type H(u) = 0. 

The strength and deformation conditions for the constructional elements and their joints are domain constraints, and are generalized as G(u) ≤ 0.

The requirement for preservation of the main structural elements of the drive, causes interval constraints u( ( u ( u(  to the variation of controlling parameters.

With the set constraints, the optimization model can be generalized as follows


((Dl( f ), u, (, p) = 0,    l(L,

u(U(({u(E3: H(u) = 0, G(u) ( 0, u( ( u ( u( },
(3)

(:({ (, (}(А,   p(P,    f([0, fm](F,

where fm is a point from the frequency range.
QUALITY CRITERIA
General assessment of the MD vibration resistance is given by the relative differences between the MD’s proper vibrations fl and the external disturbances vibrations f E [1].

( 1,2 (( 1 – f Е / fl (,   l(L},
(4)

Quantity assessment of the dynamic influence of disturbance forces on the mechanical system at a specific frequency f E is given by the dynamism coefficients
( 3,4 ( dl / dl,0,   l(L, 
(5)
where dl is the amplitude of induced vibrations at frequency f E, and dl,0 –its static deviation.
The sensitivity of the designed structure at parameter disturbances [α…α..] of the α-vector elements is assessed through the relations of quantity variations forming the characteristics (4) and (5).
( 5,6 (( dl + ( dl ( ( ( fl + ( fl (,   l(L. 
(6)
The quantity of the used material is of economic importance and is assessed through the relation of the designed object’s mass m and the prototype’s mass mp
( 7 = m ( mp. 
(7)
The adapted mass inertia moment is an indicator of a dynamic property in transient processes. In this problem it is assessed for a kinematic chain, which provides the wide spinning frequency sub-ranges, through its relative value to that of the prototype
( 8 = J ( Jp. 
(8)
The set criteria (4)-(8) form a vector criterion
( (u)(((({((},   (:([1:8], 
(9)
subject to minimizing.

OPTIMIZATION PROBLEM
For the mathematical model (2) the optimization problem is formulated
Pmin u(( (,  ((({ ((D( f ), u, (, p)(0, 

u(U, ((A, p(P, f(F}, ((u)((, 
(10)
where ‘Pmin’ is a Pareto-minimizing operator [6] of all components of vector ( (u).
The solution of problem (10) are two sub-sets: (*( ( of effective points u*((* ( {u*: u* = arg Pmin u(( (}; (*( ( - from the corresponding to Δ* Pareto-optimal points (*( (* ( {(*: (*= ( (u*)}. The choice of one compromising solution can be significantly facilitated through a well-grounded decrease of the sub-sets of Δ* and Π*.

CALCULATION PROCEDURE
A two-stage procedure is used to solve problem (10) [2]. At the first stage the sub-sets Δ* and Π* are builtemploying the PSI (Parameter Space Investigation) – method [6].

At the second stage, with the help of the so called “procedure for μ-selection” [2], the sub-sets (R  ( (* are defined and arranged according to their order of efficiency R({6, 5, …, 1}. The sub-set of the highest order (R = 6  usually contains only one point, which is Salukvadze-optimal solution (u S, f S ) [5]. It opens the possibility for a steady approach of the partitive criteria to their uncompromising optimal values (the utopian point u( ).

The final compromising solution (u#, f #) can be chosen by means of a sequential analysis of the selected Pareto-optimal sub-sets MR in a descending order.

NUMERICAL EXPERIMENT RESULTS 

An iterative variation scheme in the domain U is used for the calculation process [6]. It is a sounding according to the PSI-method with 20741 Sobolev test points. 4096 of them form a legitimate sub-set ( ( U. A set Π*, of 2496 Pareto-optimal solutions, is selected in the reachable domain Π; these solutions are presented by the symbol “•” in fig.4.The corresponding points of the legitimate sub-set (* ( ( are presented in fig. 3 by the same symbol.
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Fig.3  A set of effective points Δ* 
Fig.4  A set of Pareto-optimal points Π*
Part of the results of the μ-selection (( ( [ (j ], j = 1, 2, 3) carried out, are presented in fig. 4 and in Table 1. The utopic point u( in the μ-space is presented by the symbol “ ◦ “, and the Salukvadze-optimal solution ( the test point from row R = 6 in Table 1) – by “⁪”.

The (R=5 sub-set of the Pareto-optimal solutions from the next most efficient row, as well as the effective points which correspond to them are presented in fig.4 and fig.3 by the symbol “+”. The analysis of their solutions makes it possible seven more compromising versions to be outlined. Two of them are shown in Table 1.

Table 1. Selected Pareto-optimal solutions

	Row
	Point №: u1, u2, u3, u4
	f1
	f2
	f3
	f4
	f5
	f6
	f7
	f8

	–
	u(
	0.0486
	0.0295
	3.670
	1.545
	0.0115
	0.0031
	0.767
	0.940

	R = 6
	95: 134,182,203,207
	0.0588
	0.0363
	4.314
	1.949
	0.0255
	0.0043
	0.965
	1.018

	R = 5
	292: 137,184,207,210
	0.0588
	0.0361
	4.311
	1.942
	0.0251
	0.0041
	0.995
	1.029

	R = 5
	1727: 144,182,209,225
	0.0589
	0.0379
	4.396
	2.049
	0.0223
	0.0040
	1.057
	1.086

	R = 2
	1640: 141,193,180,180
	0.0602
	0.0485
	4.468
	2.712
	0.0303
	0.0034
	0.767
	0.961


The number 292 point has minimal values according to the criteria ((, (:([1:6], which means that the designed object will have better dynamic characteristics compared to the found Salukvadze-optimal solution, but with higher compromise levels according to the criteria ( 7 and ( 8.

The number 1727 point ensures the lowest sensitivity to AFC of DM for the two kinematic chains with parameter disturbances – the (5 and (6 criteria.

The minimal mass is given by the parameters of point 1640. It belongs to the (R=2 set and the minimal values according to criterion (7 are achieved at the expense of higher compromise levels according to the other criteria.
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Fig.1 Adapted model of a metal cutting machine main drive (MD)





Fig. 2 Amplitude-frequency characteristics
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